服務熱線:010-83993593
手機號碼:13810615661
地 址:北京市西城區廣安門外大街168號朗琴國際大廈B座603室
手機號碼:13810615661
地 址:北京市西城區廣安門外大街168號朗琴國際大廈B座603室
Electronic nosedata analysis for detection of mai | ||||||||||||
|
||||||||||||
an!°electronicnose!±hasbeenusedforthedetectionofadulterationsofsesameoil.thesystem,comprising10metaloxidesemiconductsensors,wasusedtogenerateapatternofthevolatilecompoundspresentinthesamples.priortodifferentsupervisedpatternrecognitiontreatments,featureextractiontechniqueswereemployedtochooseasetofoptimaldiscriminantvariables.principalcomponentanalysispca,fisherlineartransformationflt,stepwiselineardiscriminantanalysisstep-lda,se-lectionbyfisherweightssfwwereused,respectively.andthen,lineardiscriminantanalysislda,probabilisticneuralnetworkspnn,backpropagationneuralnetworksbpnnandgeneralregressionneuralnetworkgrnnwereappliedaspatternrecognitiontechniquesfortheelectronicnose.asforldaandpnn,fltwasthemosteffectivefeatureextractionmethod,whilestep-ldawasthemosteffectivewayforbpnnandfltwasmoresuitableforgrnn.withonlyonesamplemisclassi?edinourexperiment,ldaismorepowerfulthanpnn.excellentresultswereobtainedinthepredictionofpercentageofadulterationinsesameoilbybpnnandgrnn.aftertrainingforsometime,bpnncouldpredicttheadulterationquantitativelymorepreciselythangrnn,whereaswithfltasitsfeatureextractionmethodandwithoutiterativetraining,grnncouldalsoyieldratheracceptableresults.?2006elsevierb.v.allrightsreserved. |
||||||||||||